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AIlsCrad-A nonlinear elastic tubular membrane bonded at its ends to rigid plates is subjected to internal
pressure and elongation. For a fixed elongation, pressure initially increases with radius, reaches a local
maximum and then decreases. The purpose of this work is to determine this limiting pressure for each
prescribed elongation. The usual boundary value problem formulation is such that a two dimensional search
must be conducted. This can be computationally very costly. A method is presented which reduces the
determination of the limiting pressure to a one-dimensional search. Anumerical example is presented.

\. INTRODUCTION

An interesting phenomenon in nonlinear elasticity arises in the problem of the inflation of a
spherical me.mbrane by internal pressure. In studying this problem for an incompressible Mooney
model, Green and Shield[l] showed that the inflating pressure ,,-need not montonically increase
with deformed radius r. In particular, p can increase montonically. to a local maximum, decrease to
a local minimum and then increase once more. This local maximum represents a limiting pressure.
If a higher internal pressure is applied, the membrane will either respond dynamically or assume a
much larger equilibrium state.

The same phenomenon appears in other membrane problems, such as the inflation by lateral
pressure of a flat circular membrane clamped along a boundary [2J or the inflation of a torus by
internal pressure[3J. In each of these cases, the pressure has a local maximum when considered
as a function of an appropriate deformation parameter. Again for the reason discussed above, it
is useful to know the magnitude and deformation at this local maximum.

In the above examples there is only one load parameter, the internal pressure. Now consider
a nonlinear, elastic, cylindrical membrane which is bonded at its ends to rigid plates. The
membrane is to be subjected to simultaneous inflation and elongation. Two load parameters
must now be specified, the internal pressure and either the elongation or force applied to the
end plates.

This problem was first solved analytically by Kydoniefs and Spencer[4J for the special case
of zero end forces. They presented deformed profiles for a number of internal pressures. Their
results indicate that the relation between pressure and deformed radius at mid-length has a local
maximum. However, this case is governed by only one load parameter, the pressure. The
present work is concerned with determining the local maximum in the more general case, when
two parameters are varied.

For the cases of the pressurized spherical and toroidal. membranes, and the clamped
membrane, it is possible to construct the pressure-geometry relation by an inverse procedure.
The problem formUlations are such that the local maximum can be found by a one parameter
search. On the other hand, the formUlation of the tube problem is such that a two parameter
search must be conducted. Since this can be very time consuming, often prohibitive in
computing cost, an alternate method is desirable The one presented here is an optimization
scheme using a projected gradient. By means of this method, the search for the maximum
pressure ~s confined to a path (a one dimensional space) instead of a two dimensional space,
allowing a significant saving in computer time to be realized. It is applied to the tube problem to
obtain results for this interesting case as well as to demonstrate the method for more
complicated problems.

The problem is formulated in Section 2. A numerical method for solving the boundary value
problem for any prescribed pressure and either length or force is outlined in Section 3. The
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projected gradient optimization scheme is developed in Section 4. Results for a specific kind of
elastic material are presented in Section 5.

2. FORMULATION

The midsurface of the undeformed membrane is a circular cylinder of radius a and length
2Lo• The membrane has uniform initial thickness ho• The ends of the tube are bonded to rigid
circular end plates of radius a. These end plates are considered attached to a loading device in
that either prescribed end forces or elongation can be applied.

Placing cylindrical coordinates with origin at mid·height, the undeformed membrane
consists of particles at (a, 0, z), 0:5 0:5 27T, - Lo:5 z:5 Lo. A typical particle moves to
(p(z), 0, J(z» (see Fig. I). Assuming axial symmetry, principal directions of stretch and stress
are known a priori to be tangent to the membrane in the meridional (I) and circumferential (2)
directions and normal to the surface. The stretch ratios are given by, respectively,

(2.1 )

where ()' = d( )/dz and A3 is determined by the incompressibility condition. If fTa denotes a
principal stress, its stress resultant per unit length in the membrane surface is Ta = hoA3fTa ,

(a = 1, 2). Introduce non-dimensional coordinates z= zla, P = pIa and i = Jla and stress
iTa = fTalCo, where Co is a parameter with dimensions of stress. Then letting ()' = d( )/dZ,
dropping the bars for notational convenience, and referring equations to the initial configura
tion, the force balance equations in the meridional and normal directions are

(2.2a)

where

(2.2b)

Z,J"

F
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F

Fig. I. Undeformed and deformed configurations of tubular membrane. Dashed lines denote undeformed
configuration.
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(2.2c)

and p is the pressure.
For an incompressible nonlinear isotropic elastic membrane material, the constitutive

equation is

where

and

l+i =OW/ali, i =1,2,

It=A I
2+A/+Al, h=At-2+A2-2+A3-2,

(2.3)

(2.3a)

a=l, f3 =2 or a =2, f3=1.

For computational purposes, the strain energy function W is taken as that given by
Alexander [5]:

Ct ::::: 17.0, C2 ::::: 19.85,

C2
W2 =(1

2
_ 3) + 'Y +C3,

C3 = 1.0, 'Y ::::: 0.735.
(2.4)

The non-dimensionalizing parameter Co is taken as CI •

Equations (2.1)-(2.4) can be reduced to a system of three simultaneous nonlinear ordinary
differential equations for Ah A2 and the associated kinematic variable 11 defined in (2.2c), (see
[6]). This is achieved by substituting from (2.3) into (2.2a), and solving for A; and 11'. The
compatibility relation in (2.2c) completes the system. An alternate formulation which avoids
redoing this algebra for each new choice of strain energy function W was used instead.
Defining

• 0'1
O't::::: AI' (2.5)

where the stresses are non-dimensional, (2.2) reduces to

A' A A

0' I ::::: 0'2''1,

A;::::: AI 71,

~' = (I - ~2)tTzltT,- PA,Az[l- ~z]'lzltTt.

(2.6)

Supplemented by (2.3), these are five equations for Ah Az, tTh tTZ and 71. tT2 is eliminated by using
(2.3) with a::::: 2 and (2.5) to express it in terms of A, and Az• Again, with a::::: 1(2.3) and (2.5) give
effectively

(2.7)

This is assumed invertible to give

(2.8)

An explicit inverse is not actually obtained. Equation (2.7) is inverted numerically, which is
discussed in the next section. Using (2.8) reduces the system (2.6) to one in tTh 11 and A2,

(2.9)
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Let F be the force applied to an end plate and 2L be the prescribed deformed length.
Following non-dimensionalization, 4 becomes Lola, L becomes L/a and F becomes
F!(1TahoCo). Appropriate boundary conditions are: by (2.1), (2.2c), (2.5) and the symmetry of
deformation about z ::: 0,

and by the rigidity of the end plates,

(where Lodenotes Lola).
These are joined by

1}(0) =0, (2.10a)

(2.10b)

if elongation is prescribed, or by

(2. 11a)

(2.llb)

if end force is prescribed.
The nonlinearity of (2.9) requires numerical integration. This proceeds from z = °using

(2.10a) and values for A2(0) and tT\(O). In the actual numerical procedure, values for A\(O) and
A2(0) are selected and tTl(O) is computed using (2.3) and (2.5). If elongation is prescribed, "1(0) and
A2(0) are to be found so that (2.10b) and (2.lla) are met at z = 4. If force is prescribed, AI(O)
and AiO) are to be found satisfying (2.llb) at z =°so that (2.10b) is met at z = 4.

The above formulations define two point boundary value problems. If elongation is pres
cribed a shooting method in two dimensions must be used. If force is prescribed, (2.l1b) defines
a curve in the AI(O) - A2(0) plane, so that a shooting method in only one-dimension is needed.

The elongation boundary condition is specified for two reasons: (1) It is computationally
more interesting, (2) elongation is more likely to be the controlling parameter in an experimental
situation. The method of solution associated with this problem is discussed in the next section.

3. NUMERICAL SOLUTION

There are two subjects to be discussed. The first is the numerical integration of (2.9) subject
to the inversion (2.8). The second is the method of satisfying boundary conditions.

The system of nonlinear ordinary differential equations (2.9) is integrated by a fourth order
Runga-Kutta method. In this method, nodal values tT\(z;), 'Ij(Zt) and A2(Zt) are incremented and
the r.h.s. of (2.9) is evaluated. Now, in the derivation of (2.9), an explicit expression (2.8) forthe
elimination of AI is not actually obtained. Rather, for each new set of values of tTl and A2, (2.7)
is a nonlinear equation for AI' This is solved by iteration to yield, in effect, the evaluated inverse
at required arguments.

Regarding the boundary conditions, the problem as defined in Section 2 requires finding
A\(O), A2(0) to satisfy two conditions specified at z = L o, for prescribed pressure. A shooting
method for solving this direct problem will be presented elsewhere. Here, in conjunction with
the optimization scheme, the inverse approach is used. Values for AI(O) and A2(0) are specified
and held fixed. Then end variables A2(Lo) and ,(Lo) are functions of P. By (2.IGb). P- is chosen
to satisfy

(3.1)
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and ,(Lo) is taken as the corresponding calculated value for use in the optimizing procedure.
Newton's method is used to solve the above for P.

4. OPTIMIZATION

As discussed in Sections 2 and 3, for a given pressure and elongation, the solution of the
membrane problem can be obtained by integrating (2.9) with a correct set of initial data .\1(0)
and .\2(0). This involves a two parameter shooting procedure which can be made reasonably
efficient. Since we are only interested in the maximum pressure for a given elongation, the
search for such a pressure could require repeated use of this procedure. The repeated use of
even an efficient method can result in unacceptable accumulation of computing time and cost.

These considerations led to the selection of the projected gradient method in order to
maximize the pressure and yet maintain computational efficiency. The core of this method is the
inverse version of the tube problem presented at the end of Section 3. The remainder of this
section presents the theory of the method.

Let a two dimensional space be defined by the cartesian coordinates (.\,(0), .\2(0». For
notational convenience, this initial data space will be denoted as the x-y space. Given a set of
reasonable values for (x, y), solution of the inverse problem gives a set of values for pressure
and elongation. This implies the relations

P = P(x, y),

L = L(x, y),
(4.1)

although these functions are evaluable only by computation.
The critical pressure problem can now be stated as the constrained optimization problem:

maxP(x, y)

subject to L(x, y) = =Lf

where Lf is a fixed length.

x

y

Fig. 2. Theoretical constraint curve L, and constant pressure contours.

(4.2)



246 R. BENEDICT et ai.

Observe that (4.1) defines two families of curves in the x, Y plane, shown in Fig. 2. The
nested curves are the constant pressure contours P(x, y):::: Pi> PI> P2 > ... > Pn• Curve Lf
represents the constraint, which intersects the pressure contours for some range of values of Pj.
Moving along the constraint, the pressure increases to a maximum and then decreases. At the point
of maximum pressure, the pressure contour is tangent to the constraint curve. There the pressure
gradient g :::: VP is normal to the unit tangent t to the constraint curve. The projected gradient
method provides a systematic method for constructing a sequence of points along the constraint in
the direction of increasing P until (gt):::: o.

We first find a point (XI> YI) that satisfies L(xl> Yd:::: Lt. A move along the direction of the
gradient, g :::: VP, to a neighboring point (x*, Y*) will increase the value of P, but may not satisfy
L(x*, Y*) :::: Lt. In order to increase the value of P and still satisfy the constraint condition, we
need to move along the tangent direction to the curve L(x, y) :::: Lf in the sense of positive
gradient projection.

Let t be the unit tangent vector at a point (xno Yn) of the constraint curve L(x, y) = Lt. The
projected gradient vector is given by

g' = (gt)t. (4.3)

Determination of the next point (xn+1> Yn+l) on the constraint curve in the direction of
increasing P is done in two stages. The first stage is to determine a point along the projected
gradient vector

(n=I,2, ...) (4.4)

where k is a positive number. The second stage is to backtrack to the constraint curve. The
method of selecting k in the numerical example will be discussed in more detail in Section 5.

To backtrack to the constraint curve, a one-dimensional search is carried out along either
the line Xn+1 = i n+1 or Yn+l:::: Yn+l. The complete step gives a new point (xn+1> Yn+l) such that

P(Xn+1> Yn+l) > P(xno Yn),

L(Xn+h Yn+d:::: Lt·
(4.6)

The critical pressure is reached when (gt):::: 0, or computationally when (gt) changes sign.
Computational details are presented in the next section.

5. COMPUTATIONAL DETAILS

As the first steps in the projected gradient method, an initial starting point (x~, Yo) is
assumed, P satisfying (3.1) is calculated and L is evaluated. A one~dinensional search in x,
using Newton's method, gives a point (xo, Yo) on the constraint curve by solving

IL(x, Yo) - Ltl < EI' (5.l)

The initial increment in X was typically 0.01 and EI"" 10-4
•

Once a point (XI> YI) on the constraint curve has been found, approximations to vectors g
and t are constructed. First, P and L are computed at (XI> JI), where YI = YI + l1y. As
L(xl> YI) #- Lf in general, another one-dimensional search in X gives a point (XI> YI) on the
constraint curve, i.e.

(5.2)

An approximation to the unit tangent can be constructed from the points (XI> YI) and (XI> Yl) on
the constraint curve. Values for P have been computed at the three points (XI> YI), (XI> YI) and
(XI> 91)' An approximation to the gradient component iJP/iJy can be constructed by finite
differences from values at (XI> Yd and (XI> Yd. The component iJP/iJx can be similarly found
from values at (XI> y,) and (XI> 9,)·
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To obtain the next point in the sequence defined by (4.4), a step in the tangent direction of
k sgn (gt) is taken. The whole process of backtracking, construction of g and t, and stepping is
then repeated. When (gt) changes sign, ~y and k are replaced by IL~Y and ILk, where IL < 1, to
cut down the step size. The process is then repeated. In this manner, the position of the local
maximum can be determined within an interval of length k' on the constraint curve, where k' is
the current reduced value of k. The alternate approach of using the condition l(gt)1 < E was
abandoned because the constant pressure and constraint curves were found to be nearly
tangent over a long interval. Initial values for k can be chosen somewhat arbitrarily. Results
were obtained with k =0.1. In addition IL =0.1, and the search terminates when k' = 10-3

•

Except as noted below, this procedure was insensitive to the initial estimate (xo, Yo). The
pressure determined for each point (x, y) was taken as the first estimate in the search for the
pressure at the next point. This worked very well, allowing the correct pressure to be found
after an average of 12 iterations. The one-dimensional searches also converged rapidly,
generally in less than four iterations.

Some numerical difficulties were encountered in the numerical integration of the system of
differential equations (2.9). For small pressures and elongations (P "" 0, L "" Lo), the initial
pressure estimate had to be very close to the converged value, or the argument of the square
root in (2.6) became negative. A similar problem arose near the local maximum. In this latter
case, search steps were taken into a region where, for given x, y and L" no physical solution
was possible. Reducing ~y and k by a factor of 10, and resuming computation at the last
successful point allowed the maximum point to be found.

In the numerical example, the initial half length to radius ratio Lo was taken as 1. The largest
integration step was ~z = 0.1. Condition (3.1) was considered satisfied when i < 10-4

•

Using results obtained during computation, it was possible to construct the two families of
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Fig. 3. Computed constraint curve and constant pressure contours.
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curves defined by (4.1). These are shown in Fig. 3, where solid lines denote the constraint curve
L(x, y) = Lf and dashed lines denote the constant pressure curve P(x, y). The heavy solid line
passes through the local pressure on each constraint curve determined when k' < E2. In order to
emphasize this locus of local maxima, points were computed on the constraint curves in the
range of monotonically decreasing pressure. These were obtained by changing the sign of the
pressure gradient in the search program and restarting computations just past the local
maximum point.

Figure 3 provides an interesting display of the pressure-elongation interaction within the
range of values shown. First note the major result of this work, that for the strain energy
function considered there is indeed a local maximum pressure for each prescribed elongation.
Figure 4 shows local maximum pressure vs tube elongation. As the tube is elongated the local
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Fig. 4. Limiting pressure for prescribed elongation.
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Fig. 5. Pressure vs deformed radius at midlength p(Ojla for various elongations.
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maximum pressure decreases and occurs at larger values of -',(0) and -'2(0). Figure 5 shows
pressure vs deformed radius at the membrane center for several prescribed elongations.

The relation between the family of curves in Fig. 3 is consistent with that shown in Fig. 2.
The curvature of the constant pressure curves are opposite those at the constraint curves.
Furthermore, each constant pressure curve intersects constraint curves for only a limited range
of elongation. Each constraint curve is tangent tQ a constant pressure curve at its local
maximum pressure. Constant pressure curves for lower constant pressure intersects the
constraint curves in a second location which is in the decreasing pressure range. Beyond the
local maximum, in the region of larger values of -,,(0) and -'2(0), the constraint curves appear to
approach straight lines. Adetailed study of this behavior may be possible through an asymptotic
analysis of (2.6) as -',(0) and -'2(0) become large, but is beyond the scope of this work.
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